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• memory usage vs runtime 

• size of source code or binary  

• platform specifics



Hash Tries



Hash Tries
Fast Immutable Data Structures on the JVM



Hash Tries
(Wide) Hash-Prefix Trees with Array Nodes
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Figure 1. Inserting a sequence of numbers in a hash array mapped trie. The small index numbers refer to the
position in a sparse array.

insertion calculates the number’s hash code⇤:

hash(32) = . . . 000 00001 000002 = 0 0 0 0 0 1 032

hash(2) = . . . 000 00000 000102 = 0 0 0 0 0 0 232

hash(4098) = . . . 100 00000 000102 = 0 0 0 0 4 0 232

hash(34) = . . . 000 00001 000102 = 0 0 0 0 0 1 232

We first separate the hash codes in chunks of 5-bit to notate chunks as decimal values with ranges
from 0 to 31. Then insertion places the values in a 32-nary tree (where each is encoded as a sparse
array), based on the hash code prefixes. The tree structure gets expanded until every prefix can be
unambiguously stored.

To continue our example: 32 is inserted at the root node; 2 as well (because they do not share
a common prefix). 4098 shares the prefix path !0!2 with value 2, consequently it is placed
unambiguously on level 3. 32 shares the prefix path !2 with 2 and 4098, but can be differentiated
on level 2 from both.

Note, that a chunk size of 5-bit for 32-bit hash codes results in trees with a maximal depth of
dlog32(232)e = 7.

In contrast Figure 3 illustrates an array-based hash-table. By comparing the visualizations of both
data structures we can identify the following list of disadvantages of HAMTs over array-based hash
tables (Section ?? provides evidence for our claims):

• Lookup has to follow a tree path of length between 1–7 nodes answer containment queries.
Memory indirections and indexing into sparse arrays is less efficient than performing a single
index-based lookup in continuous array.

⇤We assume a hash function for integers returns the argument, i.e. identity.
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abstract class TrieSet  
  implements java.util.Set { 

 TrieNode root;  
 int size; 

 class TrieNode { 
  int bitmap; 
  Object[] contentAndSubTries; 
 } 
}
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Figure 3. Conceptual difference in tree layout between Clojure’s and Scala’s HAMT implementations.

Figure 4. Footprints of HAMT sets and HAMT maps in 32-bit and 64-bit environments. Defaulting to 5-bit
prefix chunks.

subnode pointers. Michael IDon’t talk explicitly about Clojure/Scala, rather about mixed/separated
HAMT node designs.I

Division between internal nodes and leaf nodes. Scala’s HAMT implementations divide the tree
structure into internal nodes and leaf nodes. The internal nodes amount for the hash-based prefix
tree structure. The leaf nodes encapsulate the data tuple (i.e, a key in case of a set, a key/value pair
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 ...  
 class NodeNode extends TrieNode { 
  int bitmap;  
  TrieNode nodeAtIndex0;  
  TrieNode nodeAtIndex1; 
 } 
 class ElementNode extends TrieNode { 
  int bitmap;   
  Object keyAtIndex0;  
  TrieNode nodeAtIndex1; 
 } 
 class NodeElement extends TrieNode { 
  int bitmap;  
  TrieNode nodeAtIndex0; 
  Object keyAtIndex1; 
 } 
 ...

class TrieNode { 
 int bitmap; 
 Object[] contentAndSubTries; 
}



class TrieNode { 
 int bitmap; 
 Object[] contentAndSubTries; 
}
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 ...  
 class NodeNode extends TrieNode { 
  int bitmap;  
  TrieNode nodeAtIndex0;  
  TrieNode nodeAtIndex1; 
 } 
 class ElementNode extends TrieNode { 
  int bitmap;   
  Object keyAtIndex0;  
  TrieNode nodeAtIndex1; 
 } 
 class NodeElement extends TrieNode { 
  int bitmap;  
  TrieNode nodeAtIndex0; 
  Object keyAtIndex1; 
 } 
 ...



Exponential 
Number of Specializations
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Memory Overhead per Pointer (Set, 32-bit)
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Frequency by Node Arity
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Arities % of Nodes
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Arities Specializations

≤4 31
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Avoiding 
Permutations
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Arities Specializations

≤4 15 (31)

≤8 45 (511)

≤12 91 (8191)
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abstract class TrieSet implements java.util.Set { 
 TrieNode root;  int size; 

 interface TrieNode { ... }  
 ... 
 class NodeNode extends TrieNode { 
  int bitmap; 
  TrieNode nodeAtIndex0;  
  TrieNode nodeAtIndex1; 
 } 
 class ElementNode extends TrieNode { 
  int bitmap;   
  Object keyAtIndex0;  
  TrieNode nodeAtIndex1; 
 } 
 class NodeElement extends TrieNode { 
  int bitmap;  
  TrieNode nodeAtIndex0; 
  Object keyAtIndex1; 
 } 
 class ElementElement extends TrieNode { 
  int bitmap;  
  Object keyAtIndex0; 
  Object keyAtIndex1; 
 } 
 ... 
}
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abstract class TrieSet implements java.util.Set { 
 TrieNode root;  int size; 

 interface TrieNode { ... }  
 ... 
 class NodeNode extends TrieNode { 

  byte pos1; TrieNode nodeAtPos1; 
  byte pos2; TrieNode nodeAtPos2; 
 } 
 class ElementNode extends TrieNode { 

  byte pos1; Object keyAtPos1; 
  byte pos2; TrieNode nodeAtPos2; 
 } 
 class NodeElement extends TrieNode { 

  byte pos1; TrieNode nodeAtPos1; 
  byte pos2; Object keyAtPos2; 
 } 
 class ElementElement extends TrieNode { 

  byte pos1; Object keyAtPos1; 
  byte pos2; Object keyAtPos2; 
 } 
 ... 
}



Lookup Performance (lower is better)
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Memory Usage (lower is better) 
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Memory Footprint Compared To Competition (lower is better)
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worst hash distribution  
-> 

good memory performance
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