
Code Specialization for 
Memory Efficient  

Hash Tries

Michael Steindorfer, Jurgen Vinju 
Centrum Wiskunde & Informatica, Amsterdam, The Netherlands



0%

25%

50%

75%

100%

Map
Generic Specialized

45%

100%

2



0%

25%

50%

75%

100%

Set
Generic Specialized

22%

100%

3



• memory usage vs runtime 

• size of source code or binary  

• platform specifics



Hash Tries



Hash Tries
Fast Immutable Data Structures on the JVM



Hash Tries
(Wide) Hash-Prefix Trees with Array Nodes



{32, 2, 4098, 34}

8



2

32
0 1 2 3 4 5 6 7 8

...
... 31

0
34

1 2 3 4 5 6 7 8
...

... 31

2
0 1 2 3

4098
4 5 6 7 8

...
... 31

(a) 33 and 2

32
0 1 2 3 4 5 6

...
... 31

0
34

1 2 3 4 5 6
...

... 31

2
0 1 2 3

4098
4 5 6

...
... 31

(b) 33 and 2

Figure 1. Inserting a sequence of numbers in a hash array mapped trie. The small index numbers refer to the
position in a sparse array.

insertion calculates the number’s hash code⇤:

hash(32) = . . . 000 00001 000002 = 0 0 0 0 0 1 032

hash(2) = . . . 000 00000 000102 = 0 0 0 0 0 0 232

hash(4098) = . . . 100 00000 000102 = 0 0 0 0 4 0 232

hash(34) = . . . 000 00001 000102 = 0 0 0 0 0 1 232

We first separate the hash codes in chunks of 5-bit to notate chunks as decimal values with ranges
from 0 to 31. Then insertion places the values in a 32-nary tree (where each is encoded as a sparse
array), based on the hash code prefixes. The tree structure gets expanded until every prefix can be
unambiguously stored.

To continue our example: 32 is inserted at the root node; 2 as well (because they do not share
a common prefix). 4098 shares the prefix path !0!2 with value 2, consequently it is placed
unambiguously on level 3. 32 shares the prefix path !2 with 2 and 4098, but can be differentiated
on level 2 from both.

Note, that a chunk size of 5-bit for 32-bit hash codes results in trees with a maximal depth of
dlog32(232)e = 7.

In contrast Figure 3 illustrates an array-based hash-table. By comparing the visualizations of both
data structures we can identify the following list of disadvantages of HAMTs over array-based hash
tables (Section ?? provides evidence for our claims):

• Lookup has to follow a tree path of length between 1–7 nodes answer containment queries.
Memory indirections and indexing into sparse arrays is less efficient than performing a single
index-based lookup in continuous array.

⇤We assume a hash function for integers returns the argument, i.e. identity.

Copyright c� 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

2

32
0 1 2 3 4 5 6 7 8

...
... 31

0
34

1 2 3 4 5 6 7 8
...

... 31

2
0 1 2 3

4098
4 5 6 7 8

...
... 31

(a) 33 and 2

32
0 1 2 3 4 5 6

...
... 31

0
34

1 2 3 4 5 6
...

... 31

2
0 1 2 3

4098
4 5 6

...
... 31

(b) 33 and 2

Figure 1. Inserting a sequence of numbers in a hash array mapped trie. The small index numbers refer to the
position in a sparse array.

insertion calculates the number’s hash code⇤:

hash(32) = . . . 000 00001 000002 = 0 0 0 0 0 1 032

hash(2) = . . . 000 00000 000102 = 0 0 0 0 0 0 232

hash(4098) = . . . 100 00000 000102 = 0 0 0 0 4 0 232

hash(34) = . . . 000 00001 000102 = 0 0 0 0 0 1 232

We first separate the hash codes in chunks of 5-bit to notate chunks as decimal values with ranges
from 0 to 31. Then insertion places the values in a 32-nary tree (where each is encoded as a sparse
array), based on the hash code prefixes. The tree structure gets expanded until every prefix can be
unambiguously stored.

To continue our example: 32 is inserted at the root node; 2 as well (because they do not share
a common prefix). 4098 shares the prefix path !0!2 with value 2, consequently it is placed
unambiguously on level 3. 32 shares the prefix path !2 with 2 and 4098, but can be differentiated
on level 2 from both.

Note, that a chunk size of 5-bit for 32-bit hash codes results in trees with a maximal depth of
dlog32(232)e = 7.

In contrast Figure 3 illustrates an array-based hash-table. By comparing the visualizations of both
data structures we can identify the following list of disadvantages of HAMTs over array-based hash
tables (Section ?? provides evidence for our claims):

• Lookup has to follow a tree path of length between 1–7 nodes answer containment queries.
Memory indirections and indexing into sparse arrays is less efficient than performing a single
index-based lookup in continuous array.

⇤We assume a hash function for integers returns the argument, i.e. identity.

Copyright c� 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

9



abstract class TrieSet  
  implements java.util.Set { 

 TrieNode root;  
 int size; 

 class TrieNode { 
  int bitmap; 
  Object[] contentAndSubTries; 
 } 
}

4

0 2

32
0 1

0 4
34

2 4098

(a) Scala

32
0 2

0
34

1

2
0

4098
4

(b) Clojure

2
32

0

0
34

1

2
0

4098
4

(c) Clojure

Figure 3. Conceptual difference in tree layout between Clojure’s and Scala’s HAMT implementations.

Figure 4. Footprints of HAMT sets and HAMT maps in 32-bit and 64-bit environments. Defaulting to 5-bit
prefix chunks.

subnode pointers. Michael IDon’t talk explicitly about Clojure/Scala, rather about mixed/separated
HAMT node designs.I

Division between internal nodes and leaf nodes. Scala’s HAMT implementations divide the tree
structure into internal nodes and leaf nodes. The internal nodes amount for the hash-based prefix
tree structure. The leaf nodes encapsulate the data tuple (i.e, a key in case of a set, a key/value pair

Copyright c� 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

10



abstract class TrieSet  
  implements java.util.Set { 

 TrieNode root;  
 int size; 

 class TrieNode { 
  int bitmap; 
  Object[] contentAndSubTries; 
 } 
}

4

0 2

32
0 1

0 4
34

2 4098

(a) Scala

32
0 2

0
34

1

2
0

4098
4

(b) Clojure

2
32

0

0
34

1

2
0

4098
4

(c) Clojure

Figure 3. Conceptual difference in tree layout between Clojure’s and Scala’s HAMT implementations.

Figure 4. Footprints of HAMT sets and HAMT maps in 32-bit and 64-bit environments. Defaulting to 5-bit
prefix chunks.

subnode pointers. Michael IDon’t talk explicitly about Clojure/Scala, rather about mixed/separated
HAMT node designs.I

Division between internal nodes and leaf nodes. Scala’s HAMT implementations divide the tree
structure into internal nodes and leaf nodes. The internal nodes amount for the hash-based prefix
tree structure. The leaf nodes encapsulate the data tuple (i.e, a key in case of a set, a key/value pair

Copyright c� 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

11



abstract class TrieSet  
  implements java.util.Set { 

 TrieNode root;  
 int size; 

 class TrieNode { 
  int bitmap; 
  Object[] contentAndSubTries; 
 } 
}

4

0 2

32
0 1

0 4
34

2 4098

(a) Scala

32
0 2

0
34

1

2
0

4098
4

(b) Clojure

2
32

0

0
34

1

2
0

4098
4

(c) Clojure

Figure 3. Conceptual difference in tree layout between Clojure’s and Scala’s HAMT implementations.

Figure 4. Footprints of HAMT sets and HAMT maps in 32-bit and 64-bit environments. Defaulting to 5-bit
prefix chunks.

subnode pointers. Michael IDon’t talk explicitly about Clojure/Scala, rather about mixed/separated
HAMT node designs.I

Division between internal nodes and leaf nodes. Scala’s HAMT implementations divide the tree
structure into internal nodes and leaf nodes. The internal nodes amount for the hash-based prefix
tree structure. The leaf nodes encapsulate the data tuple (i.e, a key in case of a set, a key/value pair

Copyright c� 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

12



13

 ...  
 class NodeNode extends TrieNode { 
  int bitmap;  
  TrieNode nodeAtIndex0;  
  TrieNode nodeAtIndex1; 
 } 
 class ElementNode extends TrieNode { 
  int bitmap;   
  Object keyAtIndex0;  
  TrieNode nodeAtIndex1; 
 } 
 class NodeElement extends TrieNode { 
  int bitmap;  
  TrieNode nodeAtIndex0; 
  Object keyAtIndex1; 
 } 
 ...

class TrieNode { 
 int bitmap; 
 Object[] contentAndSubTries; 
}



class TrieNode { 
 int bitmap; 
 Object[] contentAndSubTries; 
}

14

 ...  
 class NodeNode extends TrieNode { 
  int bitmap;  
  TrieNode nodeAtIndex0;  
  TrieNode nodeAtIndex1; 
 } 
 class ElementNode extends TrieNode { 
  int bitmap;   
  Object keyAtIndex0;  
  TrieNode nodeAtIndex1; 
 } 
 class NodeElement extends TrieNode { 
  int bitmap;  
  TrieNode nodeAtIndex0; 
  Object keyAtIndex1; 
 } 
 ...



Exponential 
Number of Specializations

15



Memory Overhead per Pointer (Set, 32-bit)

0 Bytes

8 Bytes

16 Bytes

24 Bytes

32 Bytes

40 Bytes

48 Bytes

1-ary 2-ary 3-ary 4-ary 5-ary 6-ary 7-ary 8-ary 9-ary 10-ary 11-ary 12-ary

7,38,08,08,99,010,310,7
12,814,0

18,7

24,0

48,0

16



Frequency by Node Arity

0%

10%

20%

30%

40%

50%

60%

70%

0-ary 1-ary 2-ary 3-ary 4-ary 5-ary 6-ary 7-ary 8-ary 9-ary 10-ary 11-ary 12-ary

1%1%1%1%1%1%1%1%3%

14%

63%

1%0%

17



Arities % of Nodes

≤4 82%

≤8 86%

≤12 90%

18



Arities Specializations

≤4 31

≤8 511

≤12 8191

19



Avoiding 
Permutations

20



Arities Specializations

≤4 15 (31)

≤8 45 (511)

≤12 91 (8191)

21



abstract class TrieSet implements java.util.Set { 
 TrieNode root;  int size; 

 interface TrieNode { ... }  
 ... 
 class NodeNode extends TrieNode { 
  int bitmap; 
  TrieNode nodeAtIndex0;  
  TrieNode nodeAtIndex1; 
 } 
 class ElementNode extends TrieNode { 
  int bitmap;   
  Object keyAtIndex0;  
  TrieNode nodeAtIndex1; 
 } 
 class NodeElement extends TrieNode { 
  int bitmap;  
  TrieNode nodeAtIndex0; 
  Object keyAtIndex1; 
 } 
 class ElementElement extends TrieNode { 
  int bitmap;  
  Object keyAtIndex0; 
  Object keyAtIndex1; 
 } 
 ... 
}

4

0 2

32
0 1

0 4
34

2 4098

(a) Scala

32
0 2

0
34

1

2
0

4098
4

(b) Clojure

2
32

0

0
34

1

2
0

4098
4

(c) Clojure

Figure 3. Conceptual difference in tree layout between Clojure’s and Scala’s HAMT implementations.

Figure 4. Footprints of HAMT sets and HAMT maps in 32-bit and 64-bit environments. Defaulting to 5-bit
prefix chunks.

subnode pointers. Michael IDon’t talk explicitly about Clojure/Scala, rather about mixed/separated
HAMT node designs.I

Division between internal nodes and leaf nodes. Scala’s HAMT implementations divide the tree
structure into internal nodes and leaf nodes. The internal nodes amount for the hash-based prefix
tree structure. The leaf nodes encapsulate the data tuple (i.e, a key in case of a set, a key/value pair

Copyright c� 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

22



23

4

0 2

32
0 1

0 4
34

2 4098

(a) Scala

32
0 2

0
34

1

2
0

4098
4

(b) Clojure

2
32

0

0
34

1

2
0

4098
4

(c) Clojure

Figure 3. Conceptual difference in tree layout between Clojure’s and Scala’s HAMT implementations.

Figure 4. Footprints of HAMT sets and HAMT maps in 32-bit and 64-bit environments. Defaulting to 5-bit
prefix chunks.

subnode pointers. Michael IDon’t talk explicitly about Clojure/Scala, rather about mixed/separated
HAMT node designs.I

Division between internal nodes and leaf nodes. Scala’s HAMT implementations divide the tree
structure into internal nodes and leaf nodes. The internal nodes amount for the hash-based prefix
tree structure. The leaf nodes encapsulate the data tuple (i.e, a key in case of a set, a key/value pair

Copyright c� 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

abstract class TrieSet implements java.util.Set { 
 TrieNode root;  int size; 

 interface TrieNode { ... }  
 ... 
 class NodeNode extends TrieNode { 

  byte pos1; TrieNode nodeAtPos1; 
  byte pos2; TrieNode nodeAtPos2; 
 } 
 class ElementNode extends TrieNode { 

  byte pos1; Object keyAtPos1; 
  byte pos2; TrieNode nodeAtPos2; 
 } 
 class NodeElement extends TrieNode { 

  byte pos1; TrieNode nodeAtPos1; 
  byte pos2; Object keyAtPos2; 
 } 
 class ElementElement extends TrieNode { 

  byte pos1; Object keyAtPos1; 
  byte pos2; Object keyAtPos2; 
 } 
 ... 
}



Lookup Performance (lower is better)

0%

25%

50%

75%

100%

125%

150%

Map
Generic Specialized 0-4 Specialized 0-8 Specialized 0-12

138%138%
130%

100%

24



Memory Usage (lower is better) 

0%

25%

50%

75%

100%

Map Set

22%

45%

23%

46%
52%

62%

100%100% Generic
0-4
0-8
0-12

25



Memory Usage (lower is better)

0%

25%

50%

75%

100%

Map Set

22%

45%

23%

46%
52%

62%

100%100% Generic
0-4
0-8
0-12

26



Memory Footprint Compared To Competition (lower is better)

0x

1x

2x

3x

4x

5x

Specialized 0-8 Clojure Scala

3,75x

2,2x

1x

4,9x

1,6x

1x

Map
Set

27



worst hash distribution  
-> 

good memory performance

28



  best hash distribution  
-> 

worst memory performance

29



  best hash distribution  
-> 

worst memory performance
best

30


