A puzzle with a million pieces: assembling viral genomes from sequencing data

Jasmijn Baaijens March 31st, 2017

Virus basics

- Diameter: 20-300 nanometres
- Genetic material + protein coat (capsid)
- DNA (A,C,T,G) or RNA (A,C,U,G)
- Ebola, Zika, HIV, Hepatitis, ...

Varying frequencies:

Quasispecies behaviour

Quasispecies behaviour

But how do we find out which strains are present during an infection?

Genome sequencing

Data: sequencing reads

genome length: $\sim 10^4$

Goal:

Reconstruct each of the individual virus strains (haplotypes) without using a reference genome

De novo genome assembly

Overlap graphs help to distinguish sequencing errors from true mutations!

Computational challenge: # overlaps = $O(depth^2)$

Computational challenge: $\# \text{ overlaps} = O(\text{depth}^2)$

Computational challenge: $\# \text{ overlaps} = O(\text{depth}^2)$

Computational challenge: # overlaps = $O(depth^2)$

Computational challenge: $\# \text{ overlaps} = O(\text{depth}^2)$

Computational challenge: $\# \text{ overlaps} = O(\text{depth}^2)$

SAVAGE: Strain Aware VirAl Genome assEmbly

Benchmarking experiments

Overall genome fraction recovered per strain

Hepatitis C virus

Future work

- Explore possibilities on other species, e.g. human genomes
- Improve efficiency of overlap graph construction
- Extend our algorithm to work for **other sequencing technologies**

J. Baaijens, A.Z. El Aabidine, E. Rivals, A. Schönhuth De novo viral quasispecies assembly using overlap graphs **Genome Research**, accepted for publication

Thanks for listening!

Future work

- Explore possibilities on other species, e.g. human genomes
- Improve efficiency of overlap graph construction
- Extend our algorithm to work for **other sequencing technologies**

J. Baaijens, A.Z. El Aabidine, E. Rivals, A. Schönhuth De novo viral quasispecies assembly using overlap graphs **Genome Research**, accepted for publication

Thanks for listening!

Viral quasispecies evolution

[Lauring and Andino, 2010]